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ARTICLE
Forced alignment for Nordic languages:
Rapidly constructing a high-quality prototype

Nathan J. Young & Michael McGarrah

We propose a rapid adaptation of FAVE-Align to the Nordic languages, and we offer
our own adaptation to Swedish as a template. This study is motivated by the fact that
researchers of lesser-studied languages often neither have sufficient speech material nor
sufficient time to train a forced aligner. Faced with a similar problem, we made a lim-
ited number of surface changes to FAVE-Align so that it – along with its original hid-
den Markov models for English – could be used on Stockholm Swedish. We tested the
performance of this prototype on the three main sociolects of Stockholm Swedish and
found that read-aloud alignments met all of the minimal benchmarks set by the literature.
Spontaneous-speech alignments met three of the four minimal benchmarks. We conclude
that an adaptation such as ours would especially suit laboratory experiments in Nordic
phonetics that rely on elicited speech.
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1. Introduction

When conducting phonetic investigations of a lesser-studied language, researchers
will often encounter resource challenges when it comes to segmentation. Even for
Swedish, a language not typically considered lesser-studied, very few technological
tools circulate for phoneticians. This paper seeks to address this gap by incorpo-
rating a simple and straight-forward Swedish-language adaptation of FAVE-Align
(Rosenfelder et al., 2011) that resembles approaches used in the past for endangered
languages (DiCanio et al., 2013; Coto-Solano and Solórzano, 2017; Coto-Solano
et al., 2018; Strunk et al., 2014). The novel contributions of this paper are that (1)
this is the first published adaptation for any Nordic language, (2) this adaptation
meets most of the accuracy benchmarks established by the literature, (3) a step-
by-step guideline is offered in the Appendix for those who wish to duplicate the
adaptation for another Nordic language.

In cases where a language has not yet been modeled for forced alignment – or
it has been modeled but not disseminated publicly1 – phoneticians must invest in
training a new aligner. Not only does this demand time and expertise, researchers
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may not have access to sufficient transcribed material in that language, which is a
key prerequisite for model training. But even if this material were to be available,
such a task is always a potential ‘rabbit hole’ if the end product does not end up being
sufficiently accurate. In other words, vetting the software before investing time in
learning, training and validating is simply not possible, because a good track record
for one language does not guarantee a similar track record for another (see, e.g., the
various languages in Strunk et al., 2014). In the case of researchers and students
working with small datasets where the material is insufficiently large for training,
the frustrating reality is that manual alignment is often the only option.

This paper proposes an alternative; namely, adapting the English-language FAVE-
Align to the Nordic languages while using its existing hidden Markov models. Whereas
using such ‘untrained’ models has rendered unreliable results for endangered lan-
guages typologically distant from the original language(s) used for training (DiCanio
et al., 2013; Coto-Solano and Solórzano, 2017; Coto-Solano et al., 2018; Strunk
et al., 2014), we show it to be robust and reliable for spontaneous and read-aloud
Stockholm Swedish – likely because the variety is more typologically similar to
English. In crudely and quickly adapting FAVE-Align to Stockholm Swedish, we
were able to reduce total manual segmentation time to approximately 78 hours per
recorded hour. For spontaneous speech, 37 percent of the boundaries fell within
10 milliseconds and 65 percent of the boundaries fell within 20 milliseconds of the
manual-alignment benchmark. For read-aloud speech, these figures were 50 percent
and 73 percent, respectively. Successful alignment of spontaneous speech requires
of course access to a comprehensive pronunciation dictionary, and this is not always
available for lesser-studied languages. However, aligning read-aloud speech requires
just a short list of pronunciations, so we believe that our latter results will have the
widest reach.

Given the long absence of publicly-disseminated forced aligners for any of the
Nordic Languages2 and the fact that untested Swedish aligners have only recently
been released (see Section 2.2 for a review), this paper can serve both as a method-
ological template for adapting FAVE-Align to other Nordic varieties (see Appendix)
and as a base reference for benchmarking the performance of future aligners. Such
peer-reviewed benchmarks are needed as linguists pollinate technological movement
in the field, and they are vital for seeking out prospective grants and funds to finance
the training of designated Nordic-language aligners.

2. Background

2.1 Forced alignment and its advancement of phonetic research

With the help of readily-available forced-alignment programs, phonetic investiga-
tions of English have advanced further than those of any other language. Meanwhile,
phonetic investigations of the Nordic languages, including Swedish, have lagged. To
offer an example, we examined and coded – according to language researched – the
782 articles published between 2001 and 2020 in the Journal of Phonetics. The top
three researched languages were English, German and French with 336, 71, and
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65 articles, respectively. Swedish, the most-commonly researched Nordic language,
had a mere 12 articles, followed by Norwegian with eight, Danish with four, and Ice-
landic with one. Proportionate to number of speakers, these languages are somewhat
underrepresented. Finnish, a language with approximately 5 million speakers, had
19 articles; Arrernte, a language with approximately 4 000 speakers, had six articles.
As an additional example, before the onset of the project to which this development
is tied (Young 2019), only three variationist investigations had ever been conducted
on Swedish (Gross et al., 2016; Kotsinas, 1994; Nordberg, 1975). Among these
three, only the first-listed study was acoustic-phonetic, relying on manual segmen-
tation (personal conversation with Johan Gross, 2020). The latter two were based on
data that was never phonetically segmented; rather, variants were perceptually coded
and counted.

We believe a circular dynamic is at play. The low number of contemporary
phoneticians engaged with research on Nordic languages3 has translated into few
investments in forced alignment. In turn, this lack of investment has perhaps dis-
couraged growth of the field. For English, the same feedback cycle may also be
operating, albeit in the opposite direction. The early dominance of research on En-
glish has motivated the development of a high number of forced aligners, which has
allowed the anglo-linguistic enterprise to be more prolific than ever.

The four main forced-alignment suites that circulate today were all trained on
the English language. They are Forced Alignment and Vowel Extraction (FAVE-
Align, Rosenfelder et al. 2011; Yuan et al. 2013), ProsodyLab aligner (Gorman et al.,
2011), LaBB-CAT Transcriber (Fromont and Hay, 2012), and the Montreal Forced
Aligner (McAuliffe et al., 2017). FAVE-Align (formerly known as the Penn Forced
Aligner, Yuan and Liberman 2008), ProsodyLab aligner, and the Montreal Forced
Aligner are modeled on American English. LaBB-CAT is modeled on New Zealand
English.

As a very recent addition (and after the onset of the present study), the Montreal
Forced Aligner began offering pre-trained acoustic models for Bulgarian, Croatian,
Czech, French, German, Hausa, Korean, Mandarin, Polish, Portuguese, Russian,
Spanish, Swahili, Swedish, Thai, Turkish, Ukrainian, and Vietnamese. These newer
models are trained on read-aloud speech and require the use of the GlobalPhone
dictionary (Schultz and Schlippe, 2014), which is proprietary and costs 600 euros to
obtain (alternative pronunciation dictionaries cannot be used because phone coding
within the models is opaque). Performance metrics have not yet been released for
any of these newer models (see Section 2.4).

Other options are EasyAlign for Praat (Goldman, 2011) and the BAS Speech Sci-
ence Web Services (Kisler et al., 2016). EasyAlign offers automatic transcription for
French, Spanish, and Taiwan Min, and works only on Windows machines. It appears
that a singular adaptation had been made for Swedish in 2007, but this adaptation
has not been made available to the public, and performance metrics were not ever
disclosed (Lindh, 2007). BAS Speech Science Web Services has offered for quite
some time a web-accessible interface called WebMAUS Basic for automatic tran-
scription of Basque, Catalan, Dutch, English, Estonian, Finnish, Georgian, German,
Japanese, Hungarian, Italian, Maltese, Polish, Russian, and Spanish. Recently and
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also after the onset of this project, Swedish was also added, but performance metrics
have not been released on this either.

As has been discussed in the Introduction, the present study is not the first time
that FAVE-Align has been adapted as an ‘untrained’ prototype for lesser-studied
languages. DiCanio et al. (2013) built an adaptation for Yoloxóchitl Mixtec, and
Coto-Solano and Solórzano (2017) built a similar prototype for the endangered lan-
guage Bribri and, later, Cook Islands Maori (Coto-Solano et al., 2018). Strunk et al.
(2014) built a language-general model and used it to align read-aloud and spon-
taneous Baura, Bora, Even, and Sri Lankan Malay. These aligners produced be-
tween poor and fair accuracy levels, likely due to the typological difference between
them and the language(s) their respective aligners were trained on (mostly Indo-
European). The present adaptation stands out from this group in that its accuracy
performance is competitive with custom-trained aligners.

What this review aims to demonstrate is that the development of forced align-
ment programs has been solidly anglocentric and that the expansion to other lan-
guages has excluded Nordic languages until very recently. This curious exclusion
motivated the present study and has likely motivated the recent addition of Swedish
to MFA and WebMAUS Basic. The ensuing performance analysis will serve as a
handy baseline benchmark for the eventual testing of these other Swedish adapta-
tions, and the step-by-step instructions we provide will allow others to duplicate our
adaptation for other Nordic languages.

2.2 How forced alignment works

ProsodyLab, FAVE-Align, LaBB-CAT, BAS, and EasyAlign rely on the proprietary
Hidden Markov toolkit (a.k.a. HTK; Young et al. 1993), and the Montreal Forced
Aligner (MFA) relies on the open-source Kaldi (Povey et al., 2011), which is a type
of neural network. Regardless of program, the inputs are always (1) an orthographic
transcription, (2) a sound file, and (3) a pronunciation dictionary. The output is a
phonetically-segmented file for use in Praat (Boersma and Weenink, 2017). The
orthographic transcription is often a tab-delimited file outputted by ELAN (Sloetjes
and Wittenburg, 2008) that has start and end times for each phrase/breath group (see
Figure 1). The pronunciation dictionary is a text file that has pronunciation entries
for every word in the language, which often can be as high as 30 or 40 possibilities
for long compound words. This can be seen in Figure 2 where ‘cirkusartist’ has a
canonical pronunciation option like [2"sIr.k8s.a2úIst] on line 21, but a series of elided
options such as [2"sIr.kù

"
.2úIs] on line 144 . The final output, exemplified in Figure

3, is a Textgrid file for use with Boersma and Weenink’s (2017) Praat that, as we
discuss in the following sections, can vary in accuracy depending on the aligner at
hand.

Most of the programs are free of cost (with the exception of the GlobalPhone
extension of the MFA), and they provide various amounts of source code to the pub-
lic along with varying degrees of written instructions for customizing the software
to new languages. FAVE-Align stands out because it was specifically designed for
sociolinguistic purposes and because it has shown the highest accuracy rates for the
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Figure 1. INPUTS 1 and 2: Five-column tab-delimited transcription input for FAVE-Align,
produced with ELAN, and sound file.

Figure 2. INPUT 3: Pronunciation dictionary with all possible pronunciations using ASCII
characters for IPA.

Figure 3. OUTPUT: Phonetically segmented file that is readable in Praat.
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alignment of spontaneous vernacular speech (Yuan et al., 2013). Prosodylab and
the MFA stand out because they provide the most robust assistance for training new
languages. Additionally, the MFA is wrapped, which means it can be used out of the
box with no subsidiary installations (e.g., Python).

FAVE-Align and the MFA are also noteworthy because they can process large
sound files. They break files into chunks, align them, and concatenate them back
together – all behind the scenes. This is very useful for any large-scale sociolin-
guistic project, but obviously less important for small projects. The remaining other
programs require the user to manually break sound and transcription files down into
one file per breath group. MFA is additionally noteworthy because it is relatively
user-friendly and has an out-of-the-box trainer for new languages (should one have
sufficient transcribed material handy).

We have offered a review of the various aligners on the market because this
paper is, after all, about forced alignment. We would like, however, to point out
that in the case of the Nordic languages, the comparative merits of each aligner do
not matter much. In the case of Swedish, we had neither sufficient material to train
an aligner like the MFA, and there were no pre-trained models available (and even
today, the MFA model for Swedish sits behind a paywall). The picture is the same
for Danish, Estonian Swedish, Faroese, Fenno-Swedish, Icelandic, the Northern and
Western Norwegian dialects, and Övdalian. Absent of a large corpus of transcribed
material, researchers will not be able to use MFA’s out-of-the-box trainer. The only
reasonable alternative is the one we propose here.

2.3 Teasing apart the benefits of forced alignment

The purpose of this paper is to share a resource – a FAVE ‘hack’, if you will – to
help phoneticians save time. Therefore, we will first devote this section to unpacking
where exactly the most time is spent in the segmentation process. In doing so, we
hope to demonstrate convincingly that there is a limit to the additional amount of
time one can save after a certain accuracy threshold.

There is indeed a consistent positive relationship between alignment accuracy
and time saved – if one wishes to extract data from uncorrected files, which is of-
ten the practice for variationist projects that take formant measurements from the
nucleus of, for example, 25 000-plus vowels within a corpus (Dodsworth and Ben-
ton, 2017, 377). However, for analyses of rhythm (Torgersen and Szakay, 2012;
Thomas and Carter, 2006; Young, 2019), manual corrections are obligatory. Lab-
oratory Phonetics studies, typically using smaller datasets, also mandate manually-
aligned datasets (Chodroff and Wilson 2017, 33; Cole et al. 2019, 120). In such
instances, the time needed to manually move an incorrect boundary is roughly the
same for 5 milliseconds off-mark as it is for 40 milliseconds off-mark. What saves
time is fewer inaccurate boundary placements, with the degree of accuracy being
more or less unimportant once the boundary error crosses a pre-established thresh-
old.

Importantly, those time savings are marginal when compared to the time needed
to manually build boundaries and populate the resulting cells with the appropriate
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phonetic orthography. To illustrate what we mean, take the following example. The
recording that contains the first breath group from Figure 1 ‘cirkusen var på väg.
Deras plakat’5 lasts 2.37 seconds. We set a timer while the first author conducted
the following tasks in Praat:

1. Building tiers then boundaries between words; populating the resulting cells: 2m
26s

2. Building boundaries between phonemes; populating the resulting cells: 4m 24s
3. Proofing boundaries; making final edits: 2m 19s

It takes 9 minutes 9 seconds (549 seconds) to manually align a 2.37-second
transcription, which makes our segmentation-to-recording ratio ratio 232:16 . Ob-
serve, however, that more than 75 percent of that time is spent building the boundary
architecture and populating cells. Any program that can automatically do that has
the potential to save a lot of time, regardless of how accurate boundary placement
is. A program that can accurately place the boundaries is also a boon, but that is in
many respects a secondary benefit.

It is this fact that motivated our choice to build a prototype from FAVE-Align
rather than training an entirely new model for Swedish. Since we had no guarantee
for future alignment accuracy, we felt that the rapid adaptation of a pre-existing
aligner was the more prudent investment to make, since it would eliminate steps 1
and 2 no matter what. This is also the viewpoint taken by the researchers who paved
the way for this study and used untrained aligners for typologically-rare endangered
languages (DiCanio et al., 2013; Coto-Solano and Solórzano, 2017; Coto-Solano
et al., 2018; Strunk et al., 2014). Although the accuracy levels were poor, they saved
the authors considerable time in their alignment endeavors, nonetheless.

2.4 Identifying acceptable accuracy benchmarks

If one accepts the review presented in the aforementioned section, then nearly any
level of accuracy is acceptable as a starting point from which to manually correct
boundaries. Of course, the literature on forced alignment is not as permissive. It has
established a consistent range of performance metrics that are reviewed below. We
will later apply these same metrics as a way to assess the quality of our Swedish-
language adaptation.

Many metrics circulate, and this can often make cross-comparability within the
literature challenging. This paper will therefore limit itself to the four most-common
metrics: (1) median onset difference from manual alignments, (2) mean onset differ-
ence from manual alignments, (3) the percentage of boundaries that fall within 10
milliseconds of the manual alignment, and (4) the percentage of boundaries that fall
within 20 milliseconds of the manual alignment.

As it pertains to medians and means, some studies have solely calculated them
for vowels (Evanini 2009, 56) or have calculated them from log-transformed abso-
lute values (Wilbanks, 2015; Gorman et al., 2011). Here, we calculate them for all
phonemes. Some studies have also used standard deviations (Labov et al., 2013)
or the percentage of boundaries that fall within 5, 25, 30, 40, 50, and 100 mil-
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liseconds of the manual benchmark (Cosi et al. 1991, 695; McAuliffe et al. 2017,
500). We chose not to include these metrics because their adoption is not sufficiently
widespread. The below review will first cover automatic alignment benchmarks fol-
lowed by manual alignment benchmarks. In select cases where visual figures are
provided with no actual number, we have estimated the number by lining a straight
edge between the plot and the axes (Evanini, 2009; Yuan and Liberman, 2008; Cosi
et al., 1991). While different papers have rounded to different decimal levels, we
round to the nearest whole percentage or millisecond.

2.4.1 Benchmarks for automatic alignment

Table 1 contains a schedule of the benchmarks laid out in the literature for forced
alignment that we will discuss in the ensuing prose.

Cosi et al. (1991) is the earliest paper on phonetic forced alignment that we
are aware of. They built an aligner for spontaneous Italian speech that had a mean
error of 27 milliseconds when compared to manually-aligned boundaries. For the
10-millisecond and 20-millisecond benchmarks, they were able to achieve circa 41
percent for the former and between 57 percent and 64 percent for the latter (1991,
695).

Yuan and Liberman (2008), the most commonly-cited study for FAVE-Align,
reported that approximately 70 percent of the boundaries fell within 10 milliseconds
of the manual standard and that approximately 80 percent of the boundaries fell
within 20 milliseconds of the manual standard (2008, 4). These measurements were
calculated on the original US Supreme Court Justice corpus upon which FAVE-Align
was also modeled. In later work, Yuan et al. (2013, 2308) proposed explicit phone
boundary models within the Hidden Markov Model framework that improved the
accuracy to 78 percent and 94 percent for the 10 and 20-millisecond error ranges,
respectively.

Gorman et al. (2011) compared the performance of FAVE-Align with their
newly-developed ProsodyLab Aligner on spontaneous American English taken from
a television media corpus. They found FAVE-Align to have a median boundary error
of 12 milliseconds and a mean boundary error of 21 milliseconds. For ProsodyLab,
this was 12 and 31, respectively. Ten and 20-millisecond benchmarks were not cal-
culated.

McAuliffe et al. (2017) assessed FAVE-Align and their newly-proposed Mon-
treal Forced Aligner on read-aloud and spontaneous American English. For sponta-
neous speech run through FAVE-Align, the mean error was 19 milliseconds, and the
median error was 12 milliseconds (2017, 501). For read-aloud speech run through
FAVE-Align, the mean error was 22 milliseconds, and the median error was 13 mil-
liseconds. Boundary-threshold percentages were not reported for FAVE-Align; they
were, however, reported for the Montreal Forced Aligner. These were 41 percent
within 10 milliseconds for spontaneous speech and 36 percent within 10 millisec-
onds for read-aloud speech (2017, 500). Twenty-millisecond thresholds were not
calculated. What is particularly interesting about these results is that read-aloud
speech aligned less accurately than spontaneous speech.
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————————————- Forced Alignment————————————-

Cosi et al. 1991 unnamed Italian S - 27 41 57–64
Yuan & Liberman 2008 FAVE AE S - - 70 80
Yuan et al. 2013 FAVE AE S - - 78 94
Gorman et al. 2011 FAVE AE S 12 21 - -
Gorman et al. 2011 ProsodyLab AE S 12 31 - -
McAuliffe et al. 2017 FAVE AE S 12 19 - -
McAuliffe et al. 2017 MFA AE S - - 41 -
MacKenzie & Turton 2020 FAVE BE S - 8–20 - 76–90
Goldman 2011 EasyAlign AE S - - 50, 51 75, 77
Goldman 2011 EasyAlign French S - - 49, 52 79, 82
Wilbanks 2015 FASE Spanish S - 21 45 70
McAuliffe et al. 2017 FAVE AE R 13 22 - -
McAuliffe et al. 2017 MFA AE R - - 36 -
MacKenzie & Turton 2020 FAVE BE R - 8 - 83
Hosom 2009 unnamed AE R - - 80 93

Lower bound in literature 13 31 36 57
Upper bound in literature 12 8 80 94

————————————- Manual Alignment————————————-

Cosi et al. 1991 manual Italian S - 7 - 88–90
Goldman 2011 manual AE S - - 62 79
Goldman 2011 manual French S - - 57 81
Wilbanks 2015 manual Spanish S - 15 68 79
Hosom 2009 manual AE R - - 82 94

Lower bound in literature n/a 15 57 79
Upper bound in literature n/a 7 82 94

Table 1. Schedule of the benchmarks set in the literature according to the four most popu-
lar measurements (Abbreviations: AE American English; BE British English; S spontaneous
speech; R read-aloud speech; ms milliseconds; pct percentage).
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MacKenzie and Turton (2020) later tested FAVE-Align on read-aloud and spon-
taneous British English and found 83 percent of read-aloud phones to fall within 20
milliseconds of the manual benchmark with a mean displacement of 8 milliseconds.
They found between 76 percent and 90 percent of spontaneous boundaries to fall
within 20 milliseconds of the manual benchmark with a mean displacement ranging
between 8 and 20 milliseconds (2020, 9). Neither median errors nor 10-millisecond
performance metrics were calculated.

Goldman (2011), in his development of EasyAlign for Praat, tested its accuracy
on two fifteen-minute excerpts of spontaneous English and French speech. He com-
pared performance against the alignments of two manual transcribers. For English,
50 percent and 51 percent of automatic alignments fell within 10 milliseconds of the
standards set by human aligners 1 and 2, respectively; 77 percent and 75 percent fell
within 20 milliseconds. For French, 49 percent and 52 percent of automatic align-
ments fell within 10 milliseconds of the standards set by human aligners 1 and 2,
respectively; 79 percent and 82 percent fell within 20 milliseconds.

Wilbanks (2015) built a forced aligner for Spanish (FASE) that attained a 45
percent agreement rate for the 10 millisecond range and 70 percent for the 20 mil-
lisecond range. Mean differences between FASE and human alignment was 21 mil-
liseconds.

Lastly, Hosom (2009) developed his own aligner for read-aloud English that
is the sole aligner to come close to the standards set by FAVE-Align; namely, 80
percent within 10 milliseconds and 93 percent within 20 milliseconds of his manual
alignments (2009, 364). Important, however, is that the standards set by FAVE-
Align are based on spontaneous speech whereas Hosom’s (2009) metrics are from
read-aloud speech within the TIMIT corpus.

The trend between read-aloud speech and spontaneous speech is not at all as
consistent as one would have thought; in other words, the popular aligners have not
always fared better on read-aloud speech. Therefore, we have decided to consolidate
both speech registers for the ensuing synopsis on benchmarks: The lower bounds in
the literature on automatic alignment for (1) median onset difference from manual
alignments, (2) mean onset difference from manual alignments, (3) the percentage of
boundaries that fall within 10 milliseconds of the manual alignment, and (4) the per-
centage of boundaries that fall within 20 milliseconds of the manual alignment are
13, 31, 36 percent, and 57 percent, respectively. The upper bounds in the literature
are 12, 8, 80 percent, and 94 percent, respectively.

2.4.2 Benchmarks for manual alignment

Focusing on the accuracy of automatic aligners can lead one to forget that human
alignment can have its share of errors as well. Table 1 contains a schedule of the
benchmarks set by the literature on manual alignment. Cosi et al. (1991) compared
three manual alignments of spontaneous speech against a fourth ‘gold-standard’ ref-
erence. They found mean variation to be 7 milliseconds and that the poorest agree-
ment rate was 88 percent and the highest agreement rate was 90 percent when the
tolerance range was 20 milliseconds (1991, 694). Hosom (2009), who tested his
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own alignments against the TIMIT corpus alignment, had an agreement rate of 82
percent for a tolerance of 10 milliseconds and 94 percent for a tolerance of 20 mil-
liseconds. Goldman (2011) found human-to-human agreement for North American
English to be 62 percent within the 10-millisecond range and 79 percent within the
20-millisecond range. For French, it was 57 percent and 81 percent, respectively.
For Spanish, Wilbanks (2015) found human-to-human agreement to be 68 percent
and 79 percent for the 10 and 20-millisecond thresholds, respectively. The mean
difference in boundary placement between the two human aligners was 15 millisec-
onds.

In summary, the lower bounds in the literature on manual alignment for (1)
median onset difference from manual alignments, (2) mean onset difference from
manual alignments, (3) the percentage of boundaries that fall within 10 milliseconds
of the manual alignment, and (4) the percentage of boundaries that fall within 20
milliseconds of the manual alignment are n/a, 15, 57 percent, and 79 percent, re-
spectively. The upper bounds in the literature are n/a, 7, 82 percent, and 94 percent,
respectively.

Evident here is that the lower bounds certainly exceed those offered by forced-
alignment software but that the upper bounds are nearly identical. This is to say that
the current technology is relatively mature, which implies that a lot can be gained
by expanding it to lesser-studied languages. In the subsequent sections, the proce-
dure for building the aligner will be discussed, and its performance will be assessed
according to the minimal and maximal standards established the literature. The min-
imal standards will be taken from the lower bounds set by the literature on forced
alignment (13, 31, 36 percent, 57 percent). The the maximal standards will be taken
from the upper bounds set by the literature on both manual alignments and forced
alignment, whichever of the metrics is superior (7, 8, 82 percent, 94 percent).

3. The current study

The present study adapted FAVE-Align to Swedish (henceforeth SweFA, the acronym
for Forced Alignment of Swedish) and tested SweFA on the speech of nine adult male
speakers of Stockholm Swedish. First, the acoustic models in FAVE-Align were
relabeled according to their closest corresponding Swedish phoneme. Second, a
Swedish pronunciation dictionary was procured and configured to the requirements
set by the FAVE-Align and HTK architecture. Third, performance was tested on
spontaneous and read-aloud speech from the aforementioned nine speakers. The
following three sections outline the procedure in detail.

3.1 Adapting FAVE-Align to Swedish

FAVE-Align has transparent architecture and ample documentation, which makes it
particularly handy for adaptation. Although is has been adapted before (DiCanio
et al., 2013; Coto-Solano and Solórzano, 2017; Coto-Solano et al., 2018), detailed
instructions for doing so have never been shared, which has resulted in an unfortu-
nate stream of duplicated and uncoordinated efforts. The first author, who has ex-
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P p p pil p P
B b b bil b B
T t t tal t T
D d d dal d D
K k k kal k K
G g g gas g G
M m m mil m M
N n n nål n N
NG N ng, gn ring N NG
R r r ris R D7

F f f fil f F
V v v vår v V
TH T th thriller T TH
DH ð th that’s it! ð DH
S s s sil s S
Z z z guzz z Z
TJ C tj tjock S SH
SJ Ê sj, sk, stj sjuk h HH
HH h h hal h HH
J J j jag j Y
L l l lös l L
JH dZ g, j Jaffar dZ JH
W w w walla! w W
CH tS c, ch cok tS CH
RT ú rt fart t T
RD ã rd bord d D
RN ï rn barn n N
RS ù rs fors S SH
RL í rl Karl l L

Vowels

SweF
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Swed
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l e
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clo
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t E
ng
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on
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ARPA
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t

II i: i dis i IY
YY y: y typ i IY
UU 0: u lus u UW
EE e: e leta i IY
OE ø: ö söt U UH
OEE œ: ö(+r) dör U UH
AE E: ä nät E EH
AEE æ: ä(+r) lär æ AE
OO u: o sot u UW
OA o: å lås oU OW
AA A: a lat O AO
IH I i disk I IH
YH Y y flytta I IH
EH E e lett E EH
OEH œ ö dörr U UH
AEH E ä särk E EH
OH U o rott U UH
UH 8 u ludd U UH
OAH O å lott O AO
AH a a lass a AA
AJ aJ aj fajta aI AY
OJ oJ oj oj! OI OY
EJ EJ ej mejl eI EY
EU >Eu eu euro E EH
AU >au au power aU AW

Table 2. SweFAbet, corresponding IPA, grapheme, Swedish lexical example8 , and closest En-
glish phoneme with ARPAbet.
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pertise in Swedish phonetics, therefore scoured the code and identified change spots
that would allow the use of the English HTK models for the closest correspond-
ing Swedish phoneme. The second author, a seasoned programmer, proofed these
change spots and made the hardcoded changes more pythonic. The original English
monophones in FAVE-Align are done in ARPAbet, which is an ASCII-compatible
system created by the Advanced Research Projects Agency’s (ARPA) Speech Un-
derstanding Project. We created a similar system for Swedish that we refer to here
as SweFAbet.

Table 2 provides a list of the Swedish phoneme inventory. The first column con-
tains the SweFAbet monophone, the second column the corresponding IPA symbol,
the third column the most common corresponding grapheme, the fourth column a
Swedish lexical example (some are loanwords; e.g., cok), the fifth column the clos-
est English phoneme, and the sixth column the ARPAbet monophone for that closest
English phoneme.

The closest phoneme match was subjectively determined by the first author, and
no testing was conducted to assess which phoneme would be more suitable. For
example, Central Swedish nät falls between American English trap and dress, so
we decided arbitrarily on dress (Arpabet EH). For Central Swedish /Ê/, there are
strong arguments for both selecting American /h/ and /S/, so we decided arbitrarily
on /h/. It is because of this process that we have referred to our adaptation as ‘crude’
and ‘rapid’. Testing and optimizing phoneme matches would contradict the original
aim of rapid prototype adaptation.

These adaptations are made in just six different locations within the FAVE-Align
code. Since one aim of this paper is to be a resource for other researchers who wish to
build a similar rapid prototype, detailed instructions on how we did this are provided
in the Appendix.

After we programmed these substitutions in, we subsequently also built a proto-
type for Danish (not discussed in this paper), and the second author built a unicode-8
converter, an IPA converter, and a language-general shell to host the Danish, English,
and Swedish aligners within one program (LG-FAVE, Young and McGarrah 2017).
The program is free and accessible at https://github.com/mcgarrah/LG-FAVE.

3.2 Procuring and adapting a pronunciation dictionary

The larger project for which this Swedish adaptation was built required a compre-
hensive dictionary (Young, 2019), and two resources were particularly suitable for
adaptation to the FAVE-Align format – Folkets Lexikon and The NTS pronunciation
dictionary. These would not have been necessary for an experimental project that
used, for example, a limited number of read-aloud sentences (e.g., Chodroff and
Wilson 2017). Nonetheless, we have decided to dedicate some space here to the
procurement of our dictionary because, as argued in Section 2.3, 75 percent of the
time saved in automatic transcription comes from having a pronunciation dictionary
that is both comprehensive and accurate. Furthermore, The NTS pronunciation dic-
tionary is also publicly available for Danish and Eastern Norwegian (‘bokmål’), so
our adaptation can serve as a guideline for those who wish to duplicate SweFA for
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these varieties.

3.2.1 Folkets Lexikon

Many proprietary dictionaries of Swedish are actually interface improvements to the
Folkets Lexikon (People’s Lexicon, Kann 2010; Kann and Hollman 2011), a state-
funded project that sought to offer the first web-accessible Swedish dictionary. It was
first published in 2009 and has undergone successive improvements through 2014.

The first author of this paper wrote a series of regular expressions to transform
its XDXF format into the FAVE-compatible format. Although Folkets Lexikon has
200 000 total entries, it only has 18 928 pronunciation entries, which made it insuf-
ficient for spontaneous speech recordings.

3.2.2 NTS pronunciation dictionary for Swedish

In 2003, Nordic Language Technology Holdings, Inc (NTS) filed for bankruptcy,
and the Norwegian National Library procured its intellectual property for public
dissemination. At the time, NTS was working on Automatic Speech Recognition
(ASR) for Danish, Eastern Norwegian (‘bokmål’), and Central Swedish. All three
of the NTS pronunciation dictionaries have been released to the public, but their
accuracy could not be guaranteed. Whereas Folkets Lexikon is widely accepted as
a credible source and has a chain of provenance in terms of its development, NTS
is simply a file the first author “stumbled across”. We therefore reconciled the NTS
entries with Folkets Lexikon. The NTS entries matched all but 609 of the 18 928
Folkets Lexikon entries.

We therefore decided to use the NTS dictionary, converting its original IBM
format into the FAVE-compatible format. The resulting product was a pronunciation
dictionary with 927 167 entries. We also added approximately 3 000 slang words
and programmed in a series of alternate elided pronunciations. Such alternate pro-
nunciations are showcased in Figure 2 with the entry for ‘cirkusartist’. The final
version of the dictionary has just over 16 million pronunciation entries.

3.3 Testing SweFA’s performance

SweFA was tested on the speech of nine adult male speakers of Stockholm Swedish.
Three of them speak the received Stockholmian variety, which is closest to what
Riad (2014) refers to as Central Swedish (centralsvenska); three speak the traditional
working-class variety, sometimes referred to as Södersnack or Ekensnack (Kotsinas,
1988b); three speak Stockholm’s multiethnolect, sometimes referred to as Rinkeby
Swedish of Suburban Swedish (förortssvenska) (Kotsinas, 1988a; Young, 2018).

The geographic origin of the speakers is plotted in the map in Figure 4. The map
includes Stockholm’s metro system because this is the spatial framework to which
the city’s residents typically associate its social dialects (Bijvoet and Fraurud, 2012).
One might hear the comment ‘he sounds very blue line’ as a reference to Stockholm’s
multiethnolect. Likewise, one might hear ‘that’s so green line’ in reference to the
habitus of the white working class. In this study, speakers of the received variety hail



FORCED ALIGNMENT FOR NORDIC LANGUAGES 15

Figure 4. Map of greater Stockholm and its metro. Home neighborhoods of the nine speakers
are plotted, and speakers are itemized according to their respective social dialects.

from the Center City and affluent suburbs. Speakers of working-class Stockholmian
hail from the traditional white working-class strongholds in the Southeast. Speakers
of Stockholm’s multiethnolect hail from the multiethnic suburbs in the Northwest
and Southwest.

Two speech styles were recorded for each of the nine speakers: spontaneous and
reading. Both styles were taken from sociolinguistic interviews conducted by the
first author. Criteria for treatment as ‘spontaneous’ were the presence of swearing,
channel cues (Labov, 1972, 113) and/or a topic that was engaging for the speaker
such as danger of death or supernatural occurrences (Labov, 1972). The reading
task occurred at the end of the interview whereby the participant was asked to read an
adaptation of Cirkusen, a speech-pathology diagnostic passage that contains multiple
exemplars of every Swedish phoneme and tone accent (Morris and Zetterman, 2011).

Recordings were made on individual Zoom H1 recorders with self-powered
Audio-Technica lavalier microphones in a quiet setting with minimal background
noise. They were recorded in wav format, mono, with a sample rate of 16 000
Hertz. The speech material was orthographically transcribed by native-language
transcribers, financed by a grant from the Sven och Dagmar Salén Foundation. The
transcriptions were then checked by the first author and subsequently phonetically
time-aligned using SweFA. The first author then manually corrected the segmenta-
tions in accordance with standard segmentation protocol and the guidelines provided
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in Engstrand et al. (2000). Manual correction of the alignments took an average of
68 seconds per recorded second (something that we discuss in Section 4). Segmen-
tal metrics were extracted using a customized adaptation of Brato’s (2015) script for
Praat (Boersma and Weenink, 2017).

For the spontaneous samples, pauses and hesitation markers were removed, and
the first 1000 boundaries were measured. For the reading samples, the entire record-
ing was measured after pauses and hesitation markers were removed, resulting in a
range between 954 and 1040 boundaries.

4. Results

Table 3 organizes the nine speakers and two speech styles according to the four
selected metrics. It also offers the minimal standards taken from the literature on
forced alignment and the maximal standards derived from the literature on both
forced alignment and manual alignment (reviewed in Section 2.4). The results that
exceed the minimal standards are highlighted in light gray. The results that exceed
the maximum standards are highlighted in dark gray.

For read-aloud speech, SweFA exceeds the minimal standard across all four
metrics for every speaker and variety. It also exceeds the maximal standards for
two speakers on the parameters of median onset difference: 5 for Jan-Axel and 6
for Hayder. For all of the spontaneous speech excerpts, SweFA satisfies at least one
minimal benchmark. For five of the eight spontaneous speech excerpts, all minimal
benchmarks are satisfied (August, Joseph, Nils, Hayder, Max).

When all speakers were consolidated and assessed as a whole – shown in the
bottom row of Table 3, spontaneous speech exceeded three of the four minimal
benchmarks, and read-aloud speech exceeded all four of the minimal benchmarks.
For read-aloud speech, median and mean variation from the manual standard was 10
and 18 milliseconds, respectively. For the 10 and 20-millisecond tolerance range,
50 percent and 73 percent of alignments fell within range, respectively. While spon-
taneous speech performed less well, it still showed an accuracy level that is com-
petitive with other aligners reported in the literature. Median and mean variation
from the manual standard were 13 and 32 milliseconds, respectively. For the 10 and
20-millisecond tolerance range, 37 percent and 65 percent of alignments fell within
range, respectively.

As disclosed in Section 3.3, manual correction of the alignments took us an
average of 68 seconds per recorded second. The original orthographic transcriptions
had an approximate ratio of 10:1, which meant that the final productivity ratio for
human correction was 78:1.

As discussed in the closing of Section 2.2, the present study follows a se-
ries of other untrained prototypes for lesser-studied languages, including read-aloud
Yoloxóchitl Mixtec (DiCanio et al., 2013), spontaneous Bribri (Coto-Solano and
Solórzano, 2017), Cook Islands Maori (Coto-Solano et al., 2018), and read-aloud
and spontaneous Baura, Bora, Even, and Sri Lankan Malay (Strunk et al., 2014).
It is not possible to compare the accuracy of SweFA with the adaptations to Bribri
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Received
(centralsvenska)

August 1000 13 21 39% 70% 1001 13 22 37% 66%
Joseph 1000 13 28 40% 69% 1026 10 27 52% 71%
Jan-Axel 1000 16 78 35% 60% 1040 5 17 54% 74%

Working-class
(ekensnack)

Per 1000 15 36 37% 62% 991 9 14 52% 75%
Nils 1000 13 24 39% 66% 1012 12 18 42% 69%
Paul 1000 14 33 33% 61% 954 10 16 51% 75%

Multiethnolect
(förortssvenska)

Max 1000 12 19 42% 71% 1041 8 14 55% 76%
Hayder 1000 13 22 36% 65% 1033 6 14 57% 77%
Antonio 1000 14 27 35% 63% 1025 10 17 50% 72%

all 9000 13 32 37% 65% 9123 10 18 50% 73%
Table 3. (top) Upper and lower performance standards from the literature. (bottom) Per-
formance of SweFA for three male speakers of Stockholm’s three main sociolects each in two
speech styles according to four metrics. Results highlighted in light gray exceed the lowest
standards in the literature; results highlighted in dark gray exceed the highest standards in the
literature.
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and Maori because they used different metrics. DiCanio et al. (2013, 2239), how-
ever, reported 32.3 percent and 52.3 percent of their (read-aloud) alignments falling
within 10 and 20 milliseconds of the manual benchmarks, respectively, in contrast
to the 50 percent and 73 percent reported here. Strunk et al. (2014, 3944) reported
a median variation from the manual standard that ranged between 30 (read-aloud
Bora) and 160 (spontaneous Bora) milliseconds in contrast to 10–13 reported here.
Mean variation from the manual standard fell between 148 (read-aloud Bora) and
290 (spontaneous Bora) milliseconds in contrast to 18–32 reported here.

During the peer-review process it was pointed out that it is difficult to decide
whether to attribute the success of the aligner to an excellent dictionary or to the
typological similarity between Swedish and English. Recall that we reported in Sec-
tion 3.2.2 that we added a high number of elided pronunciation options, bringing
the entry number up from 1 million to 16 million entries (exemplified in Figure
2). To separate these two factors, we conducted a pilot analysis in which we ran
the aligner using the “unexpanded” dictionary on the spontaneous speech of Au-
gust, Paul and Max. We found only marginal differences. Referring back to Table 3,
August showed 13, 21, 39% and 70% for median onset difference, mean onset differ-
ence, percentage of onsets that fell within 10 milliseconds of the manual benchmark,
and percentage of onsets that fell within 20 milliseconds of the manual benchmark,
respectively, with the expanded dictionary. With the “unexpanded” dictionary, these
figures were 13, 22, 37% ,and 68%, respectively. For Paul, the “expanded” met-
rics in Table 3 were 14, 33, 33%, and 61%, and the “unexpanded” metrics were 16,
35, 32% and 59%, respectively. For Max, the “expanded” metrics in Table 3 were
12, 19, 42%, 71%, and the “unexpanded” metrics were 12, 20, 43%, and 71%. We
did not conduct this comparison for all 18 speech samples, but we believe this post
hoc analysis buttresses the conclusion that the aligner’s success is mostly due to the
typological similarity between English and Swedish.

5. Conclusion

SweFA, our Swedish adaptation of FAVE-Align, aligns the three main varieties of
Stockholm Swedish at a competitive level of accuracy according to the minimal
benchmarks set by the literature. This is of course important for Swedish phonetics
research, but the broader implication is that researchers of other Nordic languages
can rapidly adapt a prototype from FAVE-Align and expect a rewarding return on
the endeavor. This is especially the case for read-aloud speech, where all nine test
samples met all four benchmarks separately and as a whole.

As it pertains to the aligner working better on a particular Stockholmian variety,
no significant trend emerged; rather, the variation appears to be idiolectal. For ex-
ample, the spontaneous speech of Jan-Axel, Paul and Antonio performed similarly
according to the 10ms and 20ms metrics. While their respective varieties are quite
different, all three speakers mumble and have substantial vocal fry in their speech,
which may be the reason behind SweFA’s hindered effectiveness.

For researchers who have little interest in chancing their analyses on pure au-
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tomatic alignment, manually correcting the alignments from an automatic prototype
like SweFA can cut time spent by a half. This is to say that even if a study required
manual alignments, using our proposed prototype as a starting point would still result
in considerable time savings. As we disclosed in Section 2.3, our own manual capac-
ity was 232:1, which meant that manually aligning the current 1899-second dataset
would have taken approximately 122 hours ( 232·1899

3600 ). With SweFA, our manual cor-
rections took 41 hours ( 78·1899

3600 ). The actual adaptation of FAVE-Align took about
4 hours, and the base adaptation of the NTS dictionary took another 8 hours. This
translates into a time savings of 69 hours for this project.

A serious hurdle for aligning a lesser-studied language is procuring a sufficiently
comprehensive pronunciation dictionary. While such dictionaries also exist for Dan-
ish and Eastern Norwegian by means of the NTS archives, they are lacking for other
Nordic languages. For those remaining languages, the adaptation proposed here
is particularly valuable for laboratory investigations that require a finite number of
read-aloud sentences to be aligned (as opposed to open-ended spontaneous speech).

We conclude by proposing that phonetic investigations of the Nordic languages
could benefit from ‘untrained’ aligners such as SweFA. Whereas prior untrained
models have usually rendered poor results, SweFA’s alignment of Swedish is as
accurate as many custom-trained aligners of English. The implication here is of
course that FAVE-Align is more easily adaptable to a language typologically closer
to English than, for example, Finnish or Sami9 . As we indicated earlier in the
paper, Swedish has become somewhat underrepresented in the contemporary Pho-
netics literature. This is similarly the case for Danish and Eastern Norwegian, and of
course the many other understudied Nordic varieties like Estonian Swedish, Faroese,
Fenno-Swedish, Icelandic, the Northern and Western Norwegian dialects, and Öv-
dalian. Our hope is that phoneticians can use our template to reduce the resource
intensity of their future research endeavors.

APPENDIX

Detailed instructions for Adapting FAVE-Align to Swedish

The most recent version of FAVE-Align is downloadable from https://github.com/

JoFrhwld/FAVE. Similarly, instructions on how to use it and how/where to download
HTK and SoX are at https://github.com/JoFrhwld/FAVE/wiki/FAVE-align.

FAVE-Align was built using Python. Before any of the below steps are initiated,
be sure that you have installed FAVE-Align properly and that you have executed it
successfully for English. That way, if you encounter any problems in the below steps,
you know it is because of your changes and not because of some other pre-existing
bug.

Before adapting the software, the monophones that your language will use need
to be defined and coded with ASCII characters. The ASCII requirement cannot be
changed in FAVE-Align because the limitations are set by HTK, which is propri-
etary and encrypted. The closest corresponding American-English sound should be
mapped to it as is shown for SweFAbet in Table 2. This mapping should be done



20 NATHAN J. YOUNG & MICHAEL MCGARRAH

subjectively and to the best of what you know about the language of study (fortu-
nately, FAVE is quite forgiving). Your pronunciation dictionary must use these same
monophones.

In order to repurpose the English acoustic models over to the SweFAbet inven-
tory, six files within the Folder entitled FAVE-align must be altered:

1. /FAVE-align/FAAValign.py
2. /FAVE-align/model/monophones
3. /FAVE-align/model/16000/hmmdefs
4. /FAVE-align/model/8000/hmmdefs
5. /FAVE-align/model/11025/hmmdefs
6. /FAVE-align/model/dict

Step 1: Adapt /FAVE-align/FAAValign.py

Figure A1 shows the English monophones on lines 97 and 98 of the original FAAValign.py
script.

Figure A1. Section of FAVE’s Python code that defines monophones

The English monophones on lines 97 and 98 need to be replaced with the mono-
phones of the new language. The new monophones must be ASCII-compatible.
Most of the monophones are phonemes, but some are allophones and diphthongs
(like AJ or OJ below). The new SweFAbet monophones are entered into lines 97
and 98 in Figure A2.

Figure A2. Section of SweFA’s Python code that defines monophones

FAVE-Align measures stress on the vowel of each syllable, and this is coded
with a 1 for primary stress, a 0 for no stress, and a 2 for secondary stress. Swedish,
however, is a pitch-accent language (see Riad 2014), so Accent 1 is denoted with a 1
on the vowel, Accent 2 is denoted with a 3 on the vowel, secondary stress is denoted
with a 2 on the vowel, and lack of stress is denoted with a 0 on the vowel.

Line 468 should be changed such that it can accommodate monophones longer
than 3 ASCII characters as well as the additional stress codings 0, 1, 2, and 3. This
is shown in Figure A3. Line 500 needs a small change as well, shown in Figure A4.

Even though FAVE-Align is restricted to ASCII, its script has a number of so-
phisticated protections built to keep things running even if there are non-ASCII char-
acters in the transcription that would otherwise upset the program. These ‘fixes’, so
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Before conversion

After conversion

Figure A3. Section of SweFA’s Python code that defines monophone string length and stress
numbering

Before conversion

After conversion

Figure A4. Additional section of SweFA’s Python code that defines monophone string length

to speak, begin on line 510, shown in Figure A5(a). As line 513 indicates, this only
works for transcriptions in Unicode 8 (UTF-8). The regexes from lines 517 to 520
turn the four most-common rich-text single quotes into an ASCII single quote. The
regexes from lines 521 to 524 turn the four most-common rich-text double quotes
into an ASCII double quote.

Since the Swedish keyboard has two other types of double quotes, these were
added to lines 525 and 526, shown in Figure A5(b). Since the Swedish characters
Ä, ä, Ö, ö, Å, å are not ASCII-compatible, we selected $, $, #, #, @, and @, respec-
tively, shown on lines 527 to 532 in Figure A5(b). Crucially, these were then also
substituted into the pronunciation dictionary.

Step 2: Adapt /FAVE-align/model/monophones

This file contains a simple list of all of the monophones. Note, however, that the
vowels must be listed with all possible numerical stress markings. In the case of the
SweFA adaptation, this means 0 through 3.

Step 3: Adapt /FAVE-align/model/16000/hmmdefs

The hidden Markov vectors for each monophone-including-stress is defined in the
hmmdefs files. Figure A6 shows a snapshot of the vectors for the monophone UH0
for a 16000-Hertz sound file (/FAVE-align/model/16000/hmmdefs). The mono-
phone is defined in the quotes that follow ~h. The Swedish monophones were
substituted in for the closest-sounding English monophone, shown in Figure A7.
Since there are more Swedish monophones than English, many of the vectors were
duplicated. For example, since only three vectors exist for UH (UH0, UH1, and
UH2), UH1 was duplicated and then one duplicate was changed to OEH1 and the
other to OEH3. UH0 became OEH0, and UH2 became OEH2.

Steps 4/5: Adapt /FAVE-align/model/8000/hmmdefs and
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Before conversion

After conversion

Figure A5. Section of FAVE’s Python code that converts potential UTF-8 characters in the
transcription into ASCII

/FAVE-align/model/11025/hmmdefs

These are done exactly the same way as Step 3.

Step 6: Adapt /FAVE-align/model/dict

This file is the pronunciation dictionary. All entries must be in ASCII and sit on
a separate line. In the case of Swedish, this meant substituting Ä, ä, Ö, ö, Å, å
for $, $, #, #, @, and @, respectively. A space should separate the entry from its
pronunciation, and a space must lie between every monophone in the pronunciation
entry. Figure A8 shows an example.

ENDNOTES

1. For example, we do not rule out the possibility that various singular researchers may ac-
tually be in possession of a forced aligner for every Nordic language. However, the ‘high
investment/ low reward’ of disseminating methodological improvements in our field may
be disincentivizing the sharing of such innovations. It is, for example, still rare that one
encounters methodological papers in peer-reviewed journals.

2. This claim has been confirmed in personal conversations with Nicolai Pharao and Gert Fo-
get Hansen at Copenhagen University, Sverre Stausland Johnsen at Oslo University, Per
Erik Solberg at the Norwegian National Library, and Johan Gross at Gothenburg Univer-
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Figure A6. Excerpt from lines 40470 to 41068 of the hidden Markov model vectors for the
monophone UH in unstressed position (indicated by ~h "UH0")

Figure A7. Converting the FAVE-Align vectors for UH to SweFA’s OEH. First UH1 and UH2
are duplicated, then the names are changed.

Figure A8. Dictionary format for /FAVE-align/model/dict. Every entry requires its own
line, the entry must be in ASCII, and the entry is separated from its pronunciation by a single
space. Subsequent spaces separate monophones.
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sity/University West.
3. We acknowledge, of course, that Swedish has historically played a seminal role in phonet-

ics research (Jakobson et al., 1951; Fant, 1952).
4. Pitch accent 2 is dyadic, containing an initial fall or smaller peak on the stressed syllable

followed by a delayed large peak on the post-tonic syllable. This is why the first "2" is
written as a superscript and the second "2" as a subscript. I refer the reader to Riad (2014,
181) for similar conventions for denotating accents 1 and 2 in Swedish.

5. Translation: ‘The circus was on its way. Their poster’
6. 400:1 is reported to be the typical upper limit (Yuan et al., 2013, 2306).
7. This is of course variable in Stockholm Swedish, and the decision for which ARPABET

model to use is debatable. In the present corpus, we found that syllable-final /r/ was either
completely elided or manifested as [õ]. The latter, however, was a rare occurrence because
an overwhelming majority of syllable-final /r/ values become syllable onsets due to the
sandhi effect in fluent speech (han är ung). As such, onset /r/ was quite frequent and
manifested itself most often as a flap or retroflex flap (and very occasionally as a trill among
multiethnolect speakers). In light of all of this, we ruled out using FAVE’s R monophone
for Swedish /r/. We were therefore left with the models for T or D. We felt, however, that
the portion of aspirated t-allophones that contributed to the model for T ([th] in talk vs. [R]
in ate it) would have made it less optimal than D ([d] in dog vs. [R] in made it). Therefore,
we settled on D.

8. For vowels, lexical sets are provided as established by the SweDia corpus (Engstrand et al.,
2000) in small caps as established by Leinonen (2010).

9. For non-Germanic languages like Finnish or Sami, the papers on adapting FAVE to Bora or
Yoloxóchitl Mixtec might offer a better guideline as to accuracy limits (Strunk et al., 2014;
DiCanio et al., 2013).
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